Forecasting Word Model: Twitter-based Influenza Surveillance and Prediction
نویسندگان
چکیده
Because of the increasing popularity of social media, much information has been shared on the internet, enabling social media users to understand various real world events. Particularly, social media-based infectious disease surveillance has attracted increasing attention. In this work, we specifically examine influenza: a common topic of communication on social media. The fundamental theory of this work is that several words, such as symptom words (fever, headache, etc.), appear in advance of flu epidemic occurrence. Consequently, past word occurrence can contribute to estimation of the number of current patients. To employ such forecasting words, one can first estimate the optimal time lag for each word based on their cross correlation. Then one can build a linear model consisting of word frequencies at different time points for nowcasting and for forecasting influenza epidemics. Experimentally obtained results (using 7.7 million tweets of August 2012 – January 2016), the proposed model achieved the best nowcasting performance to date (correlation ratio 0.93) and practically sufficient forecasting performance (correlation ratio 0.91 in 1-week future prediction, and correlation ratio 0.77 in 3-weeks future prediction). This report reveals the effectiveness of the word time shift to predict of future epidemics using Twitter.
منابع مشابه
Influenza Trend Prediction Using Kalman Filter and Particle Filter
Background. Seasonal influenza can cause severe health problems and significant economic burdens in various regions of the world. In addition to the substantial morbidity and mortality cases caused by influenza, the emergency department crowding is also partially attributed to the influenza patients. Forecasting the influenza trends is crucial in developing effective countermeasures to mitigate...
متن کاملUse of Hangeul Twitter to Track and Predict Human Influenza Infection
Influenza epidemics arise through the accumulation of viral genetic changes. The emergence of new virus strains coincides with a higher level of influenza-like illness (ILI), which is seen as a peak of a normal season. Monitoring the spread of an epidemic influenza in populations is a difficult and important task. Twitter is a free social networking service whose messages can improve the accura...
متن کاملForecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملWorldwide Influenza Surveillance through Twitter
We evaluate the performance of Twitter-based influenza surveillance in ten English-speaking countries across four continents. We find that tweets are positively correlated with existing surveillance data provided by government agencies in these countries, with r values ranging from .37–.81. We show that incorporating Twitter data into a strong autoregressive baseline reduces mean squared error ...
متن کاملUsing Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study
BACKGROUND Public health officials and policy makers in the United States expend significant resources at the national, state, county, and city levels to measure the rate of influenza infection. These individuals rely on influenza infection rate information to make important decisions during the course of an influenza season driving vaccination campaigns, clinical guidelines, and medical staffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016